Standard PCR Conditions in the Aguirre Lab

Introduction: The Polymerase Chain Reaction (PCR) is one of the most useful methods in molecular biology. PCR allows researchers to make millions of copies of a small fragment of the genome (<1000bp) for downstream applications (e.g., sequencing).

PCR reactions involve taking DNA extracted from organisms and combining it with the following reagents to amplify a predetermined gene: nucleotides (dntps) - the A, C, T, and G that make up DNA, a DNA polymerase called Taq - The protein that does the work, magnesium - A cofactor for the polymerase, primers - Single stranded DNA fragments typically 18-22 bp long that are complementary to the DNA fragment to be amplified and mark the beginning and end of said fragment, PCR buffer - Maintains appropriate conditions for the reaction, and molecular biology grade water - filler. In our lab, we also typically add Bovine Serum Albumin (BSA) - Binds impurities that can interfere with the PCR reaction. The reaction mix is then run on a thermocycler, a machine that can quickly and very precisely change the temperature of the reaction.

The PCR reaction typically consists of three phases: 1) Denaturation (~90-95°C): When the genomic double-stranded DNA strands separate, 2) Annealing (~45-65°C): When the primers bind to the template DNA, and 3) Extension (~72°C): When the polymerase makes copies of the template DNA (Fig. 1). The annealing temperature is the most variable because it depends on the primer/template sequence. These phases repeat over and over in a series of 30-40 cycles on the thermocycler. Below are the reagent concentrations and cycling conditions that we typically use:

Reagents: We run 10-50 μ l reactions depending on how much PCR product we want. To just see how the PCR reaction works, 10 μ l is enough for an agarose gel. For Sanger sequencing, we use 50 μ l reactions and for Nanopore sequencing, we use 20-30 μ l reactions. The following is for a 10 μ l reaction:

Stock Concentration	Volume (Conc.) in 10 ul Reaction	
Molecular Biology Grade Water	3.9 μl	
BSA (2 units/μL)	2 μl (0.4 U/μl)	
Buffer (10X)	1 μl (1X. Components: 10 mM Tris-HCl, 50	
	mM KCl, 1.5 mM MgCl ₂ , pH 8.3@25°C)	
dntps (10 mM)	0.25 μl (250 μM)	
Extra Mg (50 mM)	0.1 μl (0.5 mM; so with Mg in buffer,	
	final Mg concentration = 2mM)	
Forward Primer (10 µM)	0.35 μl (0.35 μM)	
Reverse Primer (10 μM)	0.35 μl (0.35 μM)	
Taq (5 units/μl)	0.05 μl (0.25 Units)	
DNA	2 μl (~4 to >50ng depending on DNA	
	concentration)	

Cycling conditions: Our standard PCR protocols on the thermocycler start with a letter "K" for Kingsley because the protocol was taken from the first "Molecular Biology of the Threespine Stickleback" course offered at Stanford University ~2003 and organized by Dr. David Kingsley. The number that follows indicates the annealing temperature. So K50 is the protocol below with an annealing temperature of 50°C.

- One cycle:
 - 95°C for 1 min 45 sec
 - Annealing temperature for 45 s
 - 72°C for 45 sec
- Four cycles:
 - \circ 94°C for 45 s
 - Annealing temperature for 45 s
 - \circ $\,$ 72°C for 45 sec
- Thirty cycles:
 - $\circ~$ 92°C for 30 s
 - o Annealing temperature for 45 s
 - **72°C for 45 sec**
- Final extension of 72°C for 7 min.
- 4°C Forever

VENDORS: Where we get our reagents from and the costs.

Reagent	Vendor – Catalog Number	Cost
Molecular Biology Grade	VWR - 95000-094	47.36
Water (100ml – 6 pack)		
Bovine Serum Albumin (BSA) ¹	NA	NA
Buffer (10X)	New England Biolabs. Comes with Taq. See below	NA
dntps	VWR - 101414-958	\$176
Magnesium (Mg) ²	NA	NA
Primers	Thermo Fisher Scientific	~\$10-25 depending on
		length and amount
Taq (2000 U)	New England Biolabs:	\$289
	M0273L	
Strip Tubes	USA Scientific - 1402-1700	\$92.90

¹We bought BSA >10 years ago and keep a stock solution in the lab.

²We bought Mg >10 years ago and keep a stock solution in the lab.

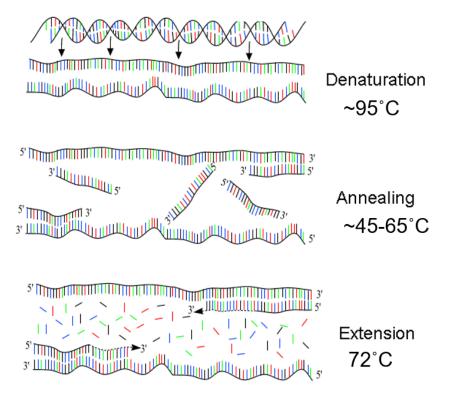


Fig. 1. Phases of a typical PCR reaction.